
Oculum afficit: Eye affect recognition
Elmar H. Langholz, Aaron Blythe, Daniel Barker, Zisheng Liao

Department of Computer Science
University of Illinois

Illinois, USA
{elmarhl2, ablythe, dbarker5, zliao13}@illinois.edu

Abstract—Recognizing human affect and emotions is a problem
that has a wide range of applications within both academia
and industry. Affect and emotion recognition within computer
vision primarily relies on images of faces. With the prevalence of
portable devices, acquiring user images of this nature requires
focus, time, and precision. While these systems work great for
full frontal faces, they tend to not work so well with partially
occluded faces like those of the operator of the device (e.g. smart
phones and/or smart glasses) in use. Due to this, we propose a
system in which we can accurately infer the overall affect of a
person by looking just at the ocular region of an individual.

Index Terms—Affective computing, human affect, eye affect
analysis, machine learning, computer vision, convolutional neural
network, arousal, valence

I. INTRODUCTION

Using machines to recognize human affect (a concept used
in psychology to describe the experience of feeling or emotion)
and emotions has always been a challenging topic that amasses
huge interest from both academia and industry. There are
currently a variety of ways to recognize human affects and
emotions such as analysis of body language, voice intonation,
and more involved methods like MRI and EEG. However, a
more popular and practical approach for affect and emotion
recognition is to rely on computer vision by primarily looking
at images of faces to analyze facial expressions.

In a world where portable devices 1 have increasingly gained
popularity, acquiring a facial image for accurate recognition
usually requires full focus, the whole face, and precise timing
of capturing the image (capturing a face in transition can result
in only a partial facial image). Furthermore, when a subject’s
face is partially occluded with masks, glasses, objects, or
even a beard, the accuracy of recognizing affect and emotions
decreases drastically with current models.

We believe it is possible to predict the affect of a user by
aiming our attention on just part of their face. More precisely,
the ocular region of a subject can convey much about an
individual’s affect, especially through a portable device.

We chose the ocular region consisting of eyes and eyebrows
since as human beings we have learned to evolve to communi-
cate emotions through them [1]. Also, eyes are rarely occluded
by users when using portable devices since they must normally
look at the screen (close to the camera) in order to capture their
image. In fact, smart glasses are used directly in front of the
eyes.

1Smartphones, VR and/or AR glasses like Oculus Rift, HoloLens, Nintendo
Switch, etc...

II. DATA SET

There exists several data sets corresponding to facial emo-
tion recognition through face images. Some of these are avail-
able freely while others need to be requested and consent given
for use. While many focus on emotion through a categorical
variable, we are interested in affect which can be recorded as
a set of numerical continuous variables. As a point in hand,
we are interested in the location of the different facial features
so that we can focus on the corresponding ocular area which
is of interest for this research.

AffectNet [2], as its name suggests, is one of the largest
providers of affect and emotion labeled data for a set of face
images with a size of 122 GB. It provides approximately
one million labeled images which were obtained by querying
three different search engines using 1250 emotion keyword in
six different languages. It is not freely available and requires
consent from the owners.

The data is split in two groups: manually and automati-
cally annotated. For this research we will start by using the
manually annotated data which is further split into training
and validation sets. Since no test set is provided, we instead
use the provided validation data set as our test set and create
our own validation data set from the training set by randomly
selecting 1% of the entries and setting them aside. We do
this to enhance reproducibility and to allow others to perform
benchmarking. Table I shows the initial actual sizes regarding
how the data set was split.

Affect labels for each face are provided as two separate sets
of numerical continuous variables: valence and arousal. While
valence corresponds to a sense of how unpleasant/negative
to pleasant/positive an event is, arousal focuses on smooth-
ing/calming to exciting/agitating. In both cases, the values
have the following range: [−1, 1]. Face location, in the form of
a bounding box, and 68-point facial landmarks corresponding
to mouth, eyes, eyebrows and face contour are provided.

III. TECHNOLOGY AND TOOLS

While there are multiple cloud providers, we chose to use
Amazon Web Services (AWS) in the West US 2 (Oregon)
region [3] due to cost. From it, we made use of Amazon Elastic
Block Store (EBS) [4] to store the AffectNet data as well
as the derived Oculum Afficit data. Different types of Elastic
Compute Cloud’s (EC2) [5] were used. A t2.large instance was
used for preprocessing and a p3.8xlarge with four NVIDIA
Tesla V100 GPU’s was used for training.

The machine learning pipeline developed for this research
was written primarily using the Python [6] programming
language. The code for it is stored and shared in GitHub
[7] within a private organization. For data preprocessing,
Apache Spark [8] through PySpark, and backed by Pandas,
[9] was used to orchestrate and distribute image processing
which leveraged OpenCV [10]. For modeling, training, and
evaluation, Keras [11] was used with a Tensorflow [12] back-
end along with NumPy [13].

We’re also in the process of investigating the use of AWS’s
Simple Storage Service (S3) [14] and Elastic MapReduce
(EMR) [15] to extend our work with Spark into a distributed
workload processing system. We may also look at using
Lambda as another method for speeding up the preprocessing
of the data.

Finally, we use Travis CI [16] to automatically load new
code artifacts into an S3 bucket which we will deliver to EC2s
for execution.

IV. METHODS AND DESIGN

A. Preprocessing
We derived a new data set by extracting ocular regions from

AffectNet. Using the facial landmark points (provided with
the data set) corresponding to both eyes and eyebrows and
the closest nose point, an initial bounding box comprised of
minimum area for these points was calculated for each image.
The size of bounding box was proportionally increased by
10% and 25%, horizontally and vertically respectively, while
keeping its center point the same. Since the centerline of a
face rarely aligns to the horizontal of the image, many of the
bounding boxes were rotated. Therefore, the degree of rotation
θ was also determined and the image was rotated around the
center point of the bounding box before cropping. This is
depicted by the top image in Figure 1.

Fig. 1. Preprocessed image example

The first image (top) demonstrates visually the constructed bounding box
before and after expanding its size, as well as the calculated rotation θ. The
second image (bottom) is the eye slot derived from preprocessing.

A rectangular ocular region image derived through the above
process is called an eye slot as shown by the bottom image in

Figure 1. If the corresponding arousal or valence is not within
the expected documented range, then the image is skipped and
not processed. If the extracted eye slot image width and height
are not larger than zero or the height is larger than the width,
it is also not included as part of the data set. Table I shows
the remaining data set size split after preprocessing.

Training Validation Test
Initial 410651 4149 5500

Preprocessed 317521 3218 4500

TABLE I
DATA SET SPLIT

B. Augmentation and normalization

The more and varied the data we train our model with, the
better it becomes with respect to accuracy and robustness. One
technique used in order to increase the size of the data set as
well as introduce perturbations to images is data augmentation.
While preprocessing constructs standardized eye slots offline
by leveraging facial landmarks, augmentation perturbs and
standardizes the eye slot size at run time to construct an infinite
amount of different eye slots from one.

During eye slot augmentation different types of pertur-
bations (transformations) were applied to the original eye
slot. For each type, a random value within a defined range
was generated and used to transform the image. Table II
lists the different types of perturbations, value ranges, and
corresponding units:

Type Range Unit
Brightness [0.5, 1.5] Lightness (HLS)
Rotation [0, 5] Degrees

Width shift [0.0, 0.10] Width percentage
Height shift [0.0, 0.10] Height percentage

Shear [0.0, 0.01] Radians
Horizontal flip - -

TABLE II
PERTURBATION TYPES, VALUE RANGES AND UNITS.

Up until this point, we retained the original size of the
eye slot derived from the image. However, once the set of
perturbations are applied to the image, its size was normalized
so that the images could be used with ease for modeling. Since
we believe that each individual detail provided within the eye
slot is important and relevant to predicting affect, we maintain
the aspect ratio of the original eye slot and pad the image at
the top and bottom and/or left and right in order to resize it to
520×170 pixels. Figure 2 shows an example of augmentation
and normalization used during model training.

Finally, the default image value range of [0, 255] was then
normalized to a range of [0.0, 1.0] with the intent to speed up
calculations by using floating point operations.

C. Modeling

In computer vision, Deep Convolutional Neural Networks
(DCNN) have been working extremely well on achieving state
of the art results for multiple different computer vision tasks

Fig. 2. Augmented and normalized image example

An example of augmentation and normalization of the eye slot from Figure 1.
A random set of perturbations were applied and padding is added (in black)
to the left and right to maintain the aspect ratio of the image and resize it to
520× 170 pixels.

[17], as well as face expression recognition [18]. Due to this,
we decided to leverage DCNN architectures to solve a dual
regression problem in which our predictor variable was the eye
slot images and the response variables (representing affect)
were their valence and arousal.

We focused on the VGGNet-like architectures [19], which
are comprised of groups called blocks, and implemented the
configurations shown in Table III. A block consists of two
convolution layers and each convolution used a stride of
3 × 3. In a block, a convolution layer was followed by a
batch normalization layer and a rectified linear unit (ReLU)
activation layer. Following a block, a max pool of 2× 2 was
used. After the blocks, fully connected (or dense) layers of
different sizes were added. Finally, at the end of each DCNN
configuration, a fully connected layer consisting of two units
with a linear activation was added. One for each matching
response variable.

DCNN configuration
M1 M2

14 weight
layers

15 weight
layers

input (512 × 170 RGB image)
conv3-16
conv3-16

conv3-64
conv3-64

max pool
conv3-32
conv3-32

conv3-128
conv3-128

max pool
conv3-64
conv3-64

conv3-256
conv3-256

max pool
conv3-128
conv3-128

conv3-512
conv3-512

max pool
conv3-256
conv3-256

conv3-512
conv3-512

max pool
conv3-512
conv3-512

conv3-512
conv3-512

max pool
FC-6144 FC-6144
FC-6144 FC-6144

FC-2000

TABLE III
VGGNET CONFIGRATIONS

D. Training

Being a dual regression problem (we are trying to learn
both valence and arousal using the same filters in one model),
the mean squared error loss function was selected to optimize
using Adam [20]. We varied the optimizer per run to use
different learning rates α ∈ {10−3, 10−4, 10−5}, β1 = 0.9,
β2 = 0.999, and ε = 10−8. For each run, training was
performed with a batch size γ = 32. While model M1 was

run for η = 35 epochs, M2 was run for η = 50 epochs. Its
loss plots are shown in Figure 3 and Figure 4 respectively.

Fig. 3. Model 1 loss plots

The first and second image (from top to bottom) show the loss for the training
and validation corresponding to model M1 which ran for η = 35 epochs.

Since the validation loss gives us an indication of how well
the models can generalize we will focus on it. For M1, the
validation loss plot shows that using an α = 10−5 not only
behaves erratically, but the loss is minimizes too slow so it
does not generalize very well. During the first ten epochs,
α = 10−3 is minimized faster than α = 10−4. Afterwards,
they seem to behave similarly but in the end still are minimized
slowly.

Fig. 4. Model 2 loss plots

The first and second image (from top to bottom) show the loss for the training
and validation corresponding to model M2 which ran for η = 50 epochs.

For model M2 we can observe that the validation loss is
minimized much faster relative to M1. All three learning rates
behaved in a lot more stable manner. However, we do still
see some erratic behavior from α = 10−5 which is similar to
previously observed. Overall, learning rate α = 10−3 provided
the best result for generalization across all epochs while α =
10−4 followed a close trend to it.

V. EVALUATION AND RESULTS

To evaluate the models, we calculated the root mean squared
error (RMSE), Pearson’s correlation coefficient (CORR), con-
cordance correlation coefficient (CCC) [21] and sign agree-
ment metric (SAGR) [22] on the test data set. Summarized
results for valence (V) and arousal (A) can be found in Table
IV for model M1 and Table V for M2.

RMSE CORR CCC SAGR
α V A V A V A V A

M1

10−3 .48 .42 .42 .42 .34 .27 .62 .74
10−4 .50 .41 .41 .43 .33 .28 .62 .73
10−5 .49 .42 .34 .35 .23 .22 .60 .72

TABLE IV
MODEL 1 VALENCE AND AROUSAL EVALUATION

Model M1 evaluation shows that while α = 10−3 performs
better on valence, α = 10−4 is better on arousal across
the metrics except for SAGR. Regarding generalization, our
previous observation regarding the close behavior between
α = 10−3 and α = 10−4 is further confirmed since the metrics
for each differ in at most 0.02.

RMSE CORR CCC SAGR
α V A V A V A V A

M2

10−3 .47 .40 .48 .48 .39 .35 .64 .74
10−4 .49 .41 .44 .47 .36 .34 .63 .73
10−5 .50 .40 .44 .46 .35 .35 .61 .75

TABLE V
MODEL 2 VALENCE AND AROUSAL EVALUATION

Unlike with model M1 the evidence that α = 10−3 performs
better is a apparent. In this case, valence and arousal are shown
to be better across the board, except for SAGR. However, when
comparing values between M1 and M2 we notice that they do
not differ by much. This seems surprising since for the former
we trained the model for η = 35 epochs while for the latter
we did for η = 50 epochs. This gives us an indication that it
might be worth exploring M1 further because it makes use of
less weights and therefore its size is smaller.

VI. DISCUSSION

The canonical AffectNet data set is hosted in OneDrive,
and we discovered some limitations with the service locking
the account we were pulling from for 30 minutes after we
downloaded each 5 GB file. It took some time to understand
the frequency of the lock/unlock cycle in order to pull the
large amount of data we needed into an EBS volume.

Working with a large amount of data that must remain
private added some additional challenges for us in sharing
with each other for use in our own accounts. We looked
into S3 buckets first, but decided it might be too easy to
accidentally expose the data publicly. Ultimately, we decided
to share an EBS volume as incremental snapshots after key
points of processing. The EBS volume contains the raw data
in both compressed and uncompressed formats and the initial
results of the time consuming pre-processing of the data. The

snapshots are only shared with specific AWS accounts in
order to maintain security and consistency. We also shared
our private S3 bucket which is storing our code and poses
less damage in the event of public exposure.

We decided to use GPU-enabled resources for efficiently
executing our DCNN architecture for processing the data.
AWS puts quotas on these resources, so we had to ask AWS
for these quotas to be raised from the default of zero. This is
very common in the cloud and acts as both a safeguard for
AWS’s capacity planning and for the safety of a user’s account
if a bitcoin miner gets hold of their credentials.

Initially, due to the serial nature of the pre-processing of the
images (loading one image at a time and performing cropping
and rotation), the process is incredibly slow; Since the data
is stored in EBS we can easily attach it to an EC2 instance
and start running our scripts, however, it took a total of 6
hours to pre-process both training and validation data. In case
we needed to change some part of our pre-processing, we
would have to wait another 6 hours for a new run which is
not desirable in terms of cost and time efficiencies. Hence,
we decided to move on to the Spark framework to parallelize
the whole process - specifically we wanted to partition our
input file which was a csv file that consisted of the location
(filename), valence, arousal, and expression of each input
facial image across multiple workers so that each worker could
process a sub-portion of the images according to the assigned
partitioned input information, for example, which image files
to read and the properties of the images.

We first decided to use an EMR (Elastic Map Reduce)
cluster that runs the Spark framework automatically. We then
needed to decide which storage system we should use. Our
options with EMR were only S3 and HDFS, but we discovered
both had performance issues with our data:

1. With S3, on each worker we needed to open a connection
using boto3 to fetch images for processing, but the speed
of downloading the data when we tested it was 300 times
slower compared to fetching images directly from a physical
disk/hard drive. This could be alleviated if we kept adding
more machines into our cluster but at a high cost.

2. HDFS is specialized for dealing with large files but we
have a considerable number of small image files that are all
smaller than a HDFS block size (64MB), repeatedly reading
these small files from HDFS is not efficient in HDFS. What
makes it even less attractive is that the HDFS storage on EMR
is ephemeral so if the cluster is shut down any data stored on
HDFS will not be saved, we would have to keep it running
all the time.

We eventually decided to move away from the EMR solu-
tion due to the fact that our parallel scheme is not within the
scope of traditional map/reduce use cases, we essentially have
two inputs, one is referenced by the other (image referenced
by csv file). S3 and HDFS would both bottleneck on the data
transfer. We would lose the best merit of Spark: data locality
(image data to be more specific) - with S3 each worker reads
from an external source for image data, on the other hand
with HDFS the images are not partitioned in the framework

so shuffle is needed. As mentioned earlier, We could have
certainly added more machines to our cluster but the cost of
running an EMR cluster is not cheap - 2 m3.xlarge instances
in our cluster (effectively only 8 cores total) cost about $30
per day.

Our solution here was to use only one EC2 instance, a
c4.8xlarge instance which has 36 cores in total and can be
easily set up with the Spark framework. This allows us to
quickly execute our code built around the Spark framework.
The results are shown in Table VI.

Type Training data Testing Data
Regular Serialized processing 5hours 2 minutes

Pyspark processing 9 minute 45 seconds 10 seconds

TABLE VI
PYSPARK PROCESSING DATA TIME COMPARISON

We can increase the processing speed even further by
scaling up the number of cores in the instance. We’ve also
discussed the potential of using EFS (Elastic File System)
across multiple instances to create our own Spark cluster and
we hope to test it in future work but within the scope of this
project, one powerful instance is more than enough as our
results show.

Requesting and setting up the p3.8xlarge instance was fast.
However, setting up the machine learning tooling to support
using the GPU’s was not as straight forward. Support for using
GPU’s required us to follow a long list of instructions for
which some required changes in the system (e.g. replacing
drivers, removing older versions, etc...) which led to restarting
the setup. Furthermore, the cost of use was extremely expen-
sive for training and evaluating the models above: $12.24 per
hour. In total we ended up using an instance and its multiple
GPU’s for 198.438 hours which led to a total cost of $2,428.88.
While extremely fast to train our models, we believe that for
that cost we could have bought or built dedicated hardware
with a single GPU and queued the experiments while still
having ample time to finish on time.

In order to have a fully working end-to-end system, we
would need to build an eye slot detector as well. While this
is currently out of scope, due to having the facial landmarks
available, it would make sense to include in place of prepro-
cessing so that we are able to quickly and accurately retrieve
eye slots on a live system. We can use the existing data to be
able to train it. We hope we can address this in future research.

There are tools on the market now such as AWS Sagemaker
where you can simply load a notebook and only pay for
the processing time. Further you can select the size and
number of machines that would be used for each of the model
development phase, the training phase, and deployment of the
model with a RESTful endpoint. This would lessen the need
for much of the DevOps work that was done for this project.
We only learned how to use this sort of option very late in the
semester and would run the next iteration on a platform such
as this.

Our results were done using a VGG16. We also built a Wide
ResNet, however we did not train it based on the costs that we
had already been charged training the model using VGG16.
In our experience training VGG16 on CIFAR10 took 3 hours,
while training a WideRes on CIFAR10 took 16 hrs on a non-
cloud based state of the art 2080Ti GPU. This is roughly 5x
the amount of time. Since we used around 6 days of processing
on the AffectNet with VGG16, we expected it to take a couple
weeks to a month and a fairly sizable bill if our original run
was any indication. To follow on in this research the WideRes
would be the next thing to work on.

VII. RELATED WORK

Research focusing on using faces to recognize emotion
while leveraging Convolutional Neural Network (CNN) has
become prevalent [23] and can even include attention mech-
anisms to try to address occlusion [24]. Leveraging these
techniques using faces to determine emotion and affect on
mobile devices [25] also exist. There is also a new focus in
combining emotion recognition techniques like EEG and facial
landmark localization [26] to solve this problem. Furthermore,
generation of facial expression from a neutral expression using
Identity-free conditional Generative Adversarial Network (IF-
GAN) [27] demonstrates another use following along this
area of research. In all the aforementioned, affect is normally
treated as a secondary artifact.

While the prior focuses on faces, using the eyes to recognize
emotions through non-neural models [28] is something that
has been experimented with in the past. However, it is not
as prevalent as facial expression recognition. However, as far
as we are aware, there isn’t any for predicting the affect of
a person by focusing just on the ocular region using neural-
based models.

VIII. CONCLUSION

We have demonstrated that it is possible to use the face
ocular region in order to infer the affect of a person. Under
constraint of the data set in use and the models used, the
results show that using the ocular region to predict arousal
is more accurate than valence. This seems to make sense if
we take into consideration that the mouth is another common
conveyor of valence especially when we smile. Having said
this, we believe that further research incorporating attention
mechanisms might provide value in order to allow the focus
on different areas of the ocular region.

Using the Sign Agreement Metric (SAGR) as the key metric.
Our model 75% in agreement on the labelled arousal and in
the low 60% in agreement on the labelled valence. This is
above the agreement between the two human annotators in
categorical model of affect of 60.7% in the original paper on
AffectNet.

We had many discussions and are coming to the conclusion
that for Data Science workloads it is quite a bit different
compared against webscale workloads. In many webscale
workloads engineers are solving for high availability through
load balancing, distribution of compute to multiple resources,

and fault tolerance. For data science workloads, such as the
model creation, we seemed to be solving more for get-in
and get-out as fast as possible with really strong expensive
machinery. Many of the tools are similar in that you still
want the repeatability that tools like AWS CloudFormation
afford you. However, you only want to use the resources for
the amount of time that the processing is actually occurring.
There were costs that we incurred both for running time and
for forgetting to shut off services. Each time that a service was
about to be used we discussed the trade offs in performance
(e.g. EBS is more performant than S3 so it’s appropriate for
processing time, however S3/EBS Snapshots are cheaper, thus
better for long term storage when not actually processing.

IX. DIVISION OF WORK

Work

Dan
Created automation for code delivery into S3.

Loaded data into S3 and tested loading it into EMR and Google
Cloud Dataproc (never successful). Provided documentation editing.

John

Implemented Pyspark framework for pre-processing image data,
EMR cluster exploration including loading data from S3 and HDFS,

Performed data processing with Spark with parallel scheme,
ML modelings (Wide ResNet),

contributed content across the paper

Aaron
Gathered data from research source. Created reusable raw

data store on EBS. Pre-processed the data in raw long running form.
Created reusable Cloudformation Templates and POC of setting up EMR.

Elmar

Proposed research and implemented ML pipeline: preprocessing,
augmentation and normalization, modeling, training, evaluation.

Performed training and evaluation of models. Contributed content
across the paper.

REFERENCES

[1] D. H. Lee and A. K. Anderson, “Reading what the mind thinks from
how the eye sees,” Psychological science, vol. 28, no. 4, pp. 494–503,
2017.

[2] A. Mollahosseini, B. Hassani, and M. H. Mahoor, “Affectnet: A
database for facial expression, valence, and arousal computing in
the wild,” CoRR, vol. abs/1708.03985, 2017. [Online]. Available:
http://arxiv.org/abs/1708.03985

[3] Amazon Web Services, “Amazon web services (aws) - cloud computing
services.” [Online]. Available: https://aws.amazon.com/

[4] ——, “Amazon elastic block store (ebs) - amazon web services.”
[Online]. Available: https://aws.amazon.com/ebs/

[5] ——, “Amazon ec2.” [Online]. Available: https://aws.amazon.com/ebs/
[6] G. Van Rossum and F. L. Drake Jr, Python reference manual. Centrum

voor Wiskunde en Informatica Amsterdam, 1995.
[7] GitHub, Inc., “The worlds leading software development platform -

github.” [Online]. Available: https://github.com/
[8] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,

X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin et al., “Apache
spark: a unified engine for big data processing,” Communications of the
ACM, vol. 59, no. 11, pp. 56–65, 2016.

[9] W. McKinney, “pandas: a foundational python library for data analysis
and statistics,” Python for High Performance and Scientific Computing,
vol. 14, 2011.

[10] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software
Tools, 2000.

[11] F. Chollet et al., “Keras,” https://keras.io, 2015.
[12] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[13] T. Oliphant, “NumPy: A guide to NumPy,” USA: Trelgol Publishing,
2006–. [Online]. Available: http://www.numpy.org/

[14] Amazon Web Services, “Cloud object storage — store & retrieve
data anywhere — amazon simple storage service.” [Online]. Available:
https://aws.amazon.com/s3/

[15] ——, “Amazon emr - amazon web services.” [Online]. Available:
https://aws.amazon.com/emr/

[16] Travis CI, GmbH, “Travis ci - test and deploy your code with
confidence.” [Online]. Available: https://travis-ci.org/

[17] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, “A
survey of the recent architectures of deep convolutional neural
networks,” CoRR, vol. abs/1901.06032, 2019. [Online]. Available:
http://arxiv.org/abs/1901.06032

[18] S. Li and W. Deng, “Deep facial expression recognition: A
survey,” CoRR, vol. abs/1804.08348, 2018. [Online]. Available:
http://arxiv.org/abs/1804.08348

[19] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in ICLR, 2015. [Online]. Available:
http://arxiv.org/abs/1409.1556

[20] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in ICLR, 2015. [Online]. Available: http://arxiv.org/abs/1412.6980

[21] I. Lawrence and K. Lin, “A concordance correlation coefficient to
evaluate reproducibility,” Biometrics, pp. 255–268, 1989.

[22] M. A. Nicolaou, H. Gunes, and M. Pantic, “Continuous prediction of
spontaneous affect from multiple cues and modalities in valence-arousal
space,” IEEE Transactions on Affective Computing, vol. 2, no. 2, pp.
92–105, 2011.

[23] N. Christou and N. Kanojiya, “Human facial expression recognition
with convolution neural networks,” in Third International Congress on
Information and Communication Technology. Springer, 2019, pp. 539–
545.

[24] Y. Li, J. Zeng, S. Shan, and X. Chen, “Occlusion aware facial expression
recognition using cnn with attention mechanism,” IEEE Transactions on
Image Processing, vol. 28, no. 5, pp. 2439–2450, 2019.

[25] C. Hewitt and H. Gunes, “Cnn-based facial affect analysis on
mobile devices,” CoRR, vol. abs/1807.08775, 2018. [Online]. Available:
http://arxiv.org/abs/1807.08775

[26] D. Li, Z. Wang, Q. Gao, Y. Song, X. Yu, and C. Wang, “Facial expression
recognition based on electroencephalogram and facial landmark local-
ization,” Technology and Health Care, no. Preprint, pp. 1–15, 2019.

[27] J. Cai, Z. Meng, A. S. Khan, Z. Li, J. O’Reilly, and Y. Tong, “Identity-
free facial expression recognition using conditional generative adversar-
ial network,” arXiv preprint arXiv:1903.08051, 2019.

[28] V. SRamaraj, A. Ravindran, and A. Thirumurugan, “Emotion recognition
from human eye expression,” IJRCCT, vol. 2, no. 4, pp. 158–164, 2013.

